

Dielectric Measurements Applied to Label-Free Protein Quantitation with Dual-Frequency Liquid Crystal

<u>Ching-Min Lin</u>¹, Po-Chang Wu¹, Mon-Juan Lee^{*2}, and Wei Lee^{*1} ¹College of Photonics, National Chiao Tung University, Tainan 71150, Taiwan ²Department of Bioscience Technology, Chang Jung Christian University, Tainan 71101, Taiwan [E-mail: <u>mjlee@mail.cjcu.edu.tw</u> (M.-J. Lee). <u>wlee@nctu.edu.tw</u> (W. Lee).]

Abstract

This study established a dual-frequency-liquid-crystal (DFLC)-based biosensor and utilized its frequency-dependent dielectric characteristics to detect and quantitate a standard model protein, bovine serum albumin (BSA). Detectable range of BSA concentrations from 10^{-2} g/ml to 10^{-7} g/ml using DFLC as the sensing element was confirmed by dielectric spectroscopy in conjunction with textural observations under a polarizing optical microscope.

Experiment

Results

(a) Dielectric spectra corresponding to various concentrations of BSA

BSA concentration (g/ml)

A detection limit of 10⁻⁷ g/ml for BSA.

(b) The permittivity difference of 10⁻³ g/ml BSA with various cell gaps
■ The deviation of the permittivity difference is only 1.1%.

Conclusion

- According to the dielectric properties of the DFLC, the value of $\varepsilon'(f_{\rm L}) \varepsilon'(f_{\rm H})$ can eliminate unexpected errors caused by cell gap variations. (Fig. 2(b))
- The detectable range of the DFLC-based protein assay can be as wide as $10^{-2}-10^{-7}$ g/ml in terms of a parameter ψ which was specifically defined to represent the effect of BSA concentration on $\varepsilon'(f_{\rm L})$ and $\varepsilon'(f_{\rm H})$. (Fig. 3)
- + This proof-of-concept research provides first insights into the dielectric spectroscopy of DFLCs in protein quantitation.

Acknowledgment

This work was financially supported by the Ministry of Science and Technology, Taiwan, under Grant Nos. 104-2112-M-009-008-MY3, 106-2923-M-009-002-MY3, and 106-2314-B-309-001. College of Photomics, Liquid Crystal Photomics Laboratory